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Asymtotic equations which define the unsteady processes in a boundary layer 
with self-induced pressure are derived. The pressure gradient is not determined 
by the solution of the external flow, but is assumed to be defined by the in - 

crease of the displacement thickness of flow filaments situated close to the 
body surface. Principal terms and terms of second order of smallness are re- 
tained in asymptotic sequences. A solution that satisfies the linearized system 
of equations is derived for the principal expansion terms .The relation between 
the considered nonlinear phenomena and stability of the boundary layer is 
indicated. 

Experiments carried out in 1946 had disclosed a remarkable phenomenon:separation 

of the supersonic boundary layer is induced by a shock wave at some distance upstream 
from it [l, 21. Its qualitative explanation was suggested in [3]. Prior to that the idea 
that pressure is induced by the boundary layer itself owing to a sudden increase of the 
flow filament thickness in the thin boundary layer was proposed for the quantitative de- 

scription of that phenomenon within the confines of the linear theory [4 1. The complete 
theory of perturbations is of the nonlinear kind; it was developed in [S -91, and made 
possible the analysis of the velocity field structure in the neighborhood of the separation 
point and downstream of it. 

1. Asymptotic Equations. We shall distinguish three regions of different pro- 
perties of free interaction between the unsteady boundary layer and the external flow 

[5 -9 1. In the upper region 1 the effects of viscosity and thermal conductivity are 

small and the flow is vortex-free. In the intermediate region II the effect of dis- 
sipative factors can also be neglected but the flow field is no longer vortex-free. Vis- 

cosity is the determining factor of the flow pattern in region 111 of the narrow boun- 

dary layer, while the effect of heat conduction is secondary, since at low velocities 
the compressibility of gas is virtually absent, if its temperature varies in a fairly nar- 

row range. 
We denote time by t , the Cartesian coordinates by 2 and j/ , the velo- 

city vector components along these axes by v, and uv , the density by p , the 

pressure by p , and the first coefficient of viscosity by hi . The parameters of the 
unperturbed gas in the steady state are denoted by subscript cw. We assume forsim- 

plicity that the gas flows along the plate at velocity U,, and that the Mach number 
M, differs from unity by a finite quantity. We introduce the small parameter E = 

Rei-“8, and calculate the Reynolds number Re, using the first viscosity coeffi - 

cient A, and distance L from the plate leading edge. 
We begin by analyzing the external region I in which the velocity field is 

vortex-free. We set here 

@cl + e%), II: = L (1 + e%q), y = 9Ly, 
(1.1) 

1n94 
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and expand the unknown functions into asymptotic series 

We substitute formulas (1.1) and expansions (1. i? 1 into the system of Navier - 
Stokes equations and collect terms of like powers of E. For the first approximation 

functions we obtain 

It is important that all equations of system (1.3) do not contain time derivatives. This 
means that the external inviscid flow is inert and adjusts itself instantly to perturbations 
which, as shown below, originate in region I I I of the boundary layer, Second ap - 
proximation functions satisfy the nonhomogeneous system of linear equations 

Its corresponding homogeneous system conforms to system (1.3 ), Time appears only in 
the right-hand sides of Eqs. (1.4), and in their solutions it is, also, contained as a par- 
ameter. 

We carry out a partial integration of the system of Eqs. (1.3 ) and (1.4 ) on con- 
dition that all unknown functions tend to zero when x1 3 - M with y, = const 

and y, + + w with x1 = const. The first of these systems yields 

u11 -l- Pll = 6 PI1 - M=%Jll = 0 

It is readily seen that in the case of supersonic flow at M, > 1 each of the functions 

pll and vi1 satisfies the wave equation. From this we have the relation 

PI1 @I, $17 01 = Pfcaz - l)-"fv,, @I, 21, 0) (1.5) 

between the perturbed pressure and the vertical component of the velocity vector when 

91 = 0. For a subsonic oncoming flow we have Neumann’s problem for the Laplace 
equation whose solution is sought in the half-plane gr > 0. Hence when @, < 1 we 

obtain -Cm 

p11 (tl, x1,0) = - f (1 - M,y’~ s (1.6) 
--m 

The partial integration of the system of equations for the second approximation 
functions yields 
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If the flow is supersonic, both functions p12 and urs are solutions of 
the wave equation containing a right-hand side. When yr = 0 these are related by 
formula 

In the case of subsonic flow Neumann’s problem may be formulated for the Poisson equa- 

tion whose solution is to be determined in the upper half-plane yl > 0. Simple 
transformations show that then 

Pl2(h, Xl, 0) = 
_ 

--a? 

a+* ‘h; 81. 0) I* 

1 ,z,1& ( dX1 + 1 
IV,2 C-+m 

1 

s s 
@II (k Xl,YI) 

-ii- l-Mm2 - if&ax, 
0 --m I 

_ I* 

f(q - :I)2 + Y,” + 

f arccos 
[ ( 

--1+X1 

d(% - X1)2 + y,” > 
111 If/(% - XI)* + Y12 + 

arccos 
-x1-xx, 

V@I + XI)” + Yl” 
) In V/(x1 + Xr12 + Yrs]} dXrdYr 

(1.8 1 

Let us pass to the investigation of the intermediate region II which contains 
the basic part of the boundary layer. Although it is possible to neglect in that region 
viscous stresses and the heat flux, it is necessary to take into account even in the first 

approximation the vorticity of the flow. The time and coordinate scales are specified 

by formulas 
t=+ (to + e2t2)1 J: = L (1 + f?3t2), y = .54Ly, (1.9) 00 

For the gas parameters the following expansions are valid: 

v~ = u= Iv0 h/2) + EU2l (t27 Xa7 Ya) + e2usa (ta, X2, 9s) + . ..I (1 1O) 

VII = u, [E%,, (ts, 321 y2) + E3V2a (ta7 x2, Y2) + . ..I 
. 

P = Pm LRO (Y2) + &P21 tt27 52~ 92) + E2Paa (tat 58, y2) + . . .I 

p = poa -I- pcsu,2 [E2 P21 tt27 ra7 Ys) + +az (t2, 22, ya) + . ..I 

Comparison of formulas (1.1) and (1.9 ) shows, first of all, that tr = ta and 
XI = La, but YI # Ya. in region II the Cartesian coordinates are of different 

scales, because the characteristic length in the transverse direction has been selected 
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equal to the thickness of the unperturbed boundary layer of the plate. Structure of the 
latter is determined by the Blasius solution [IO J, merging with which at z1 - - 00 
makes it possible to establish the form of functions U, (ys) and fi)s (9s). 
By substituting formulas (1.9) and expansions (1.10 ) into the system of Navier-Stokes 
equations for the principal terms we obtain 

(1.11) 

Here again all equations of system (1.11) do not contain time derivatives. In the first 
approximation oscillations in the basic part of the boundary layer are instantly trans - 

mitted from point to point. The essentially unstable pattern of flow can only occur in 
the thin boundary layer, The system of equations for the correction factors in expansions 

(1.10 ) is nonhomogeneous 

(1.12) 

The form of its corresponding homogeneous system is the same as that of system (1.11) , 

although it is linear. Since time appears only in terms in the right-hand sides of Eqs . 
(1. I.2 ) t hence it will appear in its solutions as a parameter. The parametric depend - 

ence on time is, thus, a distinctive feature of expansions which specify the perturbed 
flow field in both the upper region I and in the intermediate region 11 . 

To integrate the last two systems of equations we specify that perturbations in 
region 11 must die out at infinity upstream of the flow. For the principal terms we 
have the following explicit formulas : 

(1.13 1 

The arbitrary function A I (ta, x3) satisfies the condition A, -+ 0 when x2 - - 00 
and ts = con&. The meaning of this simple solution is that the streamlines in the 
boundary layer become displaced ; the instantaneous displacement is determined by sub- 

stituting y, + eA1 (C,, sa) for ys in the Blasius solution. 
The system of Eqs. (1.12) can be partially integrated. Taking into account 

the explicit form of solution for the first appro~mat~on, we obtain 
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P2z = Pz2 @2,x21 0) + (y” - 1 Mm;;y dY2) g$ ) 

f, 

where the arbitrary function Aa (t2, ss) must satisfy the condition A2 -+ 0 when 
x2 -3 - co and t, = const. 

We pass to the analysis of the boundary layer region III, where voscosity pro- 
vides the predominant effect on the pattern of the flow field. In that region we have to 
set 

+f- (to -I- e2t3L .z = L (1 + a3x3), y = &%!&!! (1.15 ll 

m 

and represent expansions for gas parameters in the form 

v, = UC0 L% (t3, 53, Y3) + fh2 (t3, 53, Y3) + . . .I 

u, = urn le%, @3, x3, i43j 4 @b2 (b, x3, y3) + . ..I 
(1.16) 

P = Qcu [Par ($3, 239 33) + EP32 @3, 53, 931 + .*.I 

p = &kc + Poopi~2 [e2p3, @3r $3, #3) i- E3P32 @3, x3, y3) + .**I 

Comparison of formulas (1.1) 1 (1.9 ) , and (1.15) shows that ti = ts = &, 
zr = x2 = x3, but y1 # y2 # y,. This is natural, since the length of all three 

regions in the direction of the oncoming stream is the same and the reading of time in 
these is carried out in the same manner .The transversescales are, however, selected differ- 

ently. As in region 11 , the scales of the two Cartesian coordinates in region 11 I are dissimilar. 
Expansions (1.16) can be simplified prior to their substi~tion into the Navier - 

Stokes equations. We assume that the plate in the stream is thermally insulated and that 
the Prandtl number is equal unity. The ratio T&T, of wall temperature to that of 
the oncoming stream then satisfies Crocco’s law [lo ] 

TW x -- z 
-=1+--&&2 

Tm 

where x is the exponent of Poissons adiabatic curve, and furthermore the derivative 
d& (~)~~~~ = 0. Hence we conclude that o’oDo ---, R, (0) not only in the 

first but, also,in the second approximation when x -+ - 30. It is shown below that 
the condition of joining solutions for regions 11 and 11 f yields the similar result : 

p/PO0 -+ R, (0) when y3 ---f + ,x). We therefore take p3r (tD, x3, y3) = R, (0) 

and pan (t3, x3,*&J = 0 as the solution, 
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When the dependence I,,&, = CTfT_ of the first viscosity coefficient on 
temperature is linear, the simplification of the system of Navier -Stokes equations 
yields for the unsteady boundary layer in an incompressible fluid the usual Prandtl equ- 
ations 

%I av31 -f-Z 
as3 ?Y3 

0, 
8P31 - 0 

a!/3 
(1.17) 

These equations are satisfied by the principal terms of expansions (1.16 ) . The difference 
is in that it is not possible to take the perturbed pressure from the solution of the exter- 

nal flow problem. For the considered boundary layer of the plate @ar/LIxs # 0. 

For second approximation functions we have 

(1.18 1 

aP33 c a3u33 -aa,-+---- 
fill 69 aya’ 

which is nothing else but the linearized Prandtl equations for unsteady flows of an incom- 
pressible fluid. The remaining terms in the input system of Navier -Stokes equations 
affect only the derivation of higher approximations. The homogeneity of equations 
that constitute system (1.18 > is related to that property. 

2. Formulation of boundary value problems. To effect the joining of the con- 
sidered asymptotic expansions it is necessary to determine the behavior of solution when 

approaching the upper and lower boundaries of region 11 from inside. Since U0 (ys) 
+I when ys -+ 00, formulas (1.14 ) yield 

@Al O" M,2-M,2 

--y--)P22(h x2, O)-- gg \ 
(2.1) 

P22-Yyz &_j iv,2 dY2 

0 

u22 - - p21(t2,52), Qae-+ ~cm2P21 @2.x2) 

which are valid for any conditions at the plate. The behavior of solution in proximity 
of the lower boundary of region ]I depends on the thermal state that is maintained on 

its surface. As before, we assume that the plate is thermally insulated. Then, in ad- 

dition to the previously noted equality n?Rs (0) ~~~~ = 0, the relationships 

which follow from the Blasius solution [IO ] are valid on that surface, Taking these into 
account it is possible to show that for 1/s = 0 functions 

P22 = paz(t2, x2, 0) (2.2) 

Y,,= - 
t 

dli,(O)“+ apt, aA, 
WOf~-) yjp--dt,-- 

A aA, dU,(O) 

B I ldr,---- d?/, 
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We use formulas (1.13 ) for the principal terms of expansions and the asymptotic 
formulas (2.1) for second approximation functions for obtaining the boundary conditions 
which must be satisfied for deriving the solution in region I. Since the external vari- 
able yr --t 0 when y, --t co , hence 

Ull (h, 217 0) = - P21 (L x2) I’ll (fl, 51, 0) = Moo2p2r (ta, X2) 

Furthermore for pressure perturbations and for the transverse component of the 
velocity vector the relationships 

@A, 
P21 (h, 51, O)= P22 (tz752,O) - r 

y Ml2 - :\I”3 

s 

_ (2.4) 

g AfrnZ d=2 
” 

are valid in the second approximation. 
Boundary condition for density perturbations and for the longitudinal component 

of the velocity vector cannot be obtained with the use of asymptotic formulas (2.1) when 

y1=0. For this the terms of the third approximation solution for region 11 must 
be known. These are not considered in the present analysis. 

Taking into consideration formulas (1.5 1 and (1.6 ) we conclude that boundary 
conditions for the principal terms of solution in region 1 can be expressed in terms of 

function A 1 (t2, x2) =; A 1 (tr, x1) when y, = 0 . By virtue of formulas (1.7 1 and 
(1.8 ) boundary conditions for terms of the second approximation contain also functions 

A, (ta, 52) = A2 (b, 51). 

Let us effect the joining of expansions which represent the asymptotic form of 
solutions in regions II and 111. Using formulas (1.13 ) and (2.2 ) we obtain the limit 
conditions which must be satisfied by the gas parameters within the boundary layer. 

When y2--+0, the internal variable ya -+ co and the sought quantities 

P31@3, 53) - P21 (t2, x2) 
(2.5 1 

u31 - 
d UO (0) 
- Ya - 

dy, 

The limit condition par + R, (0) for density perturbation was used above as 
one of the reasons for selecting psi (ta, za, ys) = R, (0) as the solution. The limit 
condition for the transverse component of the velocity vector is usually omitted. In the 
case considered here it can be represented thus 
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and is automatically satisfied when conditions (2.5 ) for pressure per~rbations and for the 
transverse component of the velocity vector are satisfied. In fact, by solving the third 

of Eqs. (1.17 1 for function u31 we obtain 

Validity of the above statement can be proved by the asymptotic substitution of expres - 
sions for p31 and ual in (2.5 > into the last formula _ 

Limit conditions for second approxima~on functions are of the form 

P32 tt3r 231 * P22 @2, x221 0) 

0 

(2.6) 

[ 
dM,(O) -2 

Y2-iq- 3 - +I dya} 
The condition p3s +- 0 has already been taken into account in the selectionof 

so1ution p32 @3% $3, p3) = 0. Introducing into the second of equalities (2.2 1 the ad- 

ditional term to uz2 which is proportional to y,, for the transverse component of the 

velocity vector we obtain the limit condition 

which is automatically satisfied, as in the first approximation, when the conditions for 
pressure perturbations and for the longitudinal component of the velocity vector are sat- 
isfied . This can be proved by solving the third equation of system (1.18 ) for function 

v32 and substituting into the right-hand side of the obtained equation the asymptotic 

values of p31, u31, ~31~ ~32 $ and ~32. 

Note that in the process of joining solutions for regions II and 111 the term 
containing psa in the expansion of density was altogether neglected. This is reasonable, 

since its contribution is proportional to 8s when r~s --f 0 , while it is sufficient to 
specify the gas density throughout the thin boundary layer with an accuracy to terms of 

order E. 
We use the conditions of joining for formulating the boundary value problems 

in region 111 for the first and second approximation functions. First I, we effect the 
malformation 
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wheretheconstanth = 0.3321 is determined by the equality 

~u~~o)/~~s = ?&-‘IP (T~/T~) -I 

and calculated using the Blasius solution for the unperturbed boundary layer. This trans- 
formation makes it possible to eliminate from the formulation of the problem the dep - 
endence of the principal terms of expansion on the rest M, - 1 that is introduced by 

equality (1.5 1 or (1.6), and on the constants C and R,(O) = (T&T,)+. 
In primed variables the system of Eqs. ( i. 17) for first approximation func- 

tions is of the canonical form 

Boundary conditions for Y’ = 0 are obviously 

%I = 0, usr’ = 0 (2.9) 

The remaining boundary conditions are specified as limit conditions, namely, . 
when Z’ -+ -w we have 

%I’ --+ YI, $+311+ 0 (2.39 1 

Moreover, on the basis of formulas (2.3 1 and (2.5 1 we conclude that when 
y’ -+ w 

u;, - y’ 3 A’ (t’, x’) + u (2.11) 

and then one of the relational 

Al = -$ 
+m s yea;, dX’, if M,<i 
--oo 

(2.12) 

is valid. 
System (2.8 ) without the term ~~s~‘/~~’ in the left-hand side of the last of 

its equations was obtained in [5 -9 ] in inv~Kga~~ of steady flows. The above con - 
siderations show that the formulation of the problem for an unsteady boundary layer is 
not unduly complicated because the first approximation equations that define the flow 
in regions I and 11 do not contain time derivatives. 
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Since neither the system of Eqs, (2.8 ) nor the boundary conditions (2.9 )- (2.12 ) 
contain parameters Re, M,, x, C, h, and Z”w/T, , transformation (2.7 1 virtually 
defines the law of similarity for the principal terms of flow parameters in an unsteady 
boundary layer. Thus the same flow patterns may exist with various values of the in - 
dicated constants, and the properties of the flow are determined by the problem initial 
data l The similarity law for steady flows was initially established experimentally E3 1 
and then given a theoretical basis in (5,7 1. 

For second approximation functions system (1.18 ) consists of linearized Prandtl 
equations. Hence, in terms of primed variables it is also of the canonical form 

a& a%;, -- 
ax’ +- ayf* 

which is free of any parameters. 
ditions usa’ = 0 and usa 

Any parameters are also absent in the boundary con - 
=O when y’ =O , and in the limit conditions 

uQSI’+O and psa’-+ 0 when x’ -+ --_a3 . The position with limit conditions 
when y’ -+ 00 is, however, different, Before adducing these, it is expedient to cal- 
culate the integrals appearing in the asymptotic formulas f 2.1) and (2.2 1. By the 
Blasius solution for the boundary layer of the plate the equalities 

1 ic II - -- 
MC? 

’ (2C)1’~[(-$>“Az-~(~- :,A+ Ah,=-3.663 

are valid Cl0 1. In these formulas the angle superscript at the improper divergent inte - 
gral denotes its finite part in the meaning of Adamard . Taking into consideration the 
conditions of joining (2.4) and (2.6 f with y’ --f co , we have as the result 

When M, > 1 the perturbed pressure is 

(2, I.5 1 

For subsonic flows at M, < 1 the similar equality is considerably more 
complex. Recalling relationship (1.8 ) between pressure perturbation and the vertical 
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component of the velocity vector at the lower boundary of region I, we obtain in this 
case 

111 I/i 1(x’ + X’)2 +- Y’> J j} dX'dY' 

where the derivative a’Lprrr (t’, X’, ~~)~~~r~~’ and the constant b are defined 
by formulas 

al&r @‘, S’Y’) 1 Ji-= CPA, (t’, x-t - 
&‘dX = - n s 

(X’ - X”)” - Y+ 
C?t’aX N [(J$’ _ Xlf)S +_ yq2 

dX” 

--I 

Derivation of the limit condition (2.14) with its associated equalities (2.15 ) 
and (2.16 ) for the perturbed pressure completes the formulation of the boundary value 
problem for second approximation functions that saisfy the system of linear equations 

(2.13 ). Here the correction terms substantially depend on constants n/r,, c, k , and 
TWIT,. 

3. The Uncar approximation. Let us consider a supersonic oncoming stream 
i.e. at M,> 1. When expanding gas parameters into asymptotic sequencies we 

shall retain only the principal terms and neglect terms of second order of smallness. We 
then have to solve in region III the system of nonlinear equations (2‘8 ) with boundary 
conditions (2.9 ) - (2.11) , and to determine pressure by the first of formulas (2.12 ). 
The stated problem is homogeneous and has evidently the trivial solution u31 = ?I, 

U3t =: 0, and Pal = 0 which corresponds to the con~nuation of Blasius solution in 
unaltered form throughout the considered region. Here and in what follows we omit the 
primes at independent variables and unknown functions. The existence of one more 
steady solution in the linear theory framework was established in [4]. This is of funda- 
mental importance, since it shows that the Blasius solution can bifurcate at the boundary 
of the boundary layer when x -+ --00. The bifurcation of solution in the steady case 
makes possible the introduction of the hypothesis of the existence of a whole class of gas 

motions with parameters that depend on time and continuously adjoin the unperturbed 
boundary layer. To test that ~ypo~~is we write the solution as 

u31 ==Y - aew’+kx df /dy, 7231 = akP’+ky (y) (3.1) 

PSI = aptfkx 
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Since the first and second equations of system (2.8 ) are linear, they indenti - 
tally satisfy these solutions. As regards the last equation, its linearization with respect 

to the amplitude a. of perturbations yields for function f (y) the third order ordinary 

differential eqaution 

The constants 0 and k in formulas (3.1) are assumed to be complex, hence 

amplitude a andf (y) are also complex. Thus 

CJ = 01 + %, t’c = k, + iks, a = al + ia,, f (y) = f,(y)+ifs(y) 

which implies that Eq. (3.2) defines a complex function of a real variable. The boun- 
dary conditions for y = 0 are derived from equality (2.9) and are of the form 

f = dfldy = 0 (3.3) 

To satisfy the limit conditions (2.30) when z -+ -00 it issufficient to set 
kr > 0. The limit condition (2. II) when g -+ 00 yields 

The boundary value problem (3.3 1, (3.4) has been thus formulated for the dif- 
ferential equation (3.2 1. Since the equation is of the third order and the problem con - 

tains only three conditions, it would appear at first sight that its solution exists for any 
o and k. But this is not so, since one of the three linearly independent solutions of 

Bq. (3.2 ) has an unbounded derivative when y + 00 _ Hence condition (3.41, while 
on the one hand stipulates the rejection of that solution, yields on the other hand an 

equality which must be satisfied by the multiplicative constant in the solution with a 
bounded derivative l This clearly shows that the boundary value problem (3.3 ) * (3.4 ) 
is a problem in eigenvalues . 

To solve the formulated problem we use the following method. We differentiate 

Q. (3.2 ) and apply the transformation z E o/k”” + K&y to the independent vari- 

able, As the result we obtain the fourth order differential equation 

with boundary conditions 

Since k, = Rek > 0 , the inequalities --n/6 < arg k’l* < n/6 are valid, 

hence -3Cn16 c arg 2 < n/6 when y -+ 00. It will be readily seen that EqJ3.5 ) 
represents the canonical form of the Airy equation for the second derivative #f/&s. 
Its solution which satisfies condition 1 df/dz 1 < oo can be presented in the form 

CPfffS = coAi (z) 

where Ai (z) is the Airy function of the complex variable, and CO is an arbitrary con- 
stant. The condition for the third derivative at point z = o/k% determines that constant 
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d Ai (~/k”~) -I 
co = - 

dz 1 
and the remaining conditions at that point make it possible to write the solution as 

(3.7 1 

Finally, the last of conditions (3.6 ) which restricts the order of solution increase 
at the infinitely distant point yields the variance relationship 

_ d Ai (o//c”“) 
[ i Ai (2) dZ]-’ = V’s 

dz ,_ 
olk’/s 

(3.81 

which links the exponents o and k. Values of these exponents, which satisfy formula 
(3.8) are eigenvalues in the solution of the input boundary value problem. 

When o = 0, the dependence on time in the linear solution (3.1) vanishes, 
and the flow of gas in the boundary layer is steady. As established earlier in [4], in 

this case k (0) = kl* = [3”* I? (“/s)/2x]“4, k, = 0. To determine the general func- 
tionk (w)we use the expansion of Airy’s function into series [ll] 

Ai=$[E 

cu 

Zsm 2 Z3* (3.9 1 -- 

.rn -0 
In! 32mr 012 + 2/a) 3% c m=O rn! 32mr (nz + ‘/3) 1 

whose radius of convergence is infinite. From this for small 1 w 1 we have 

o = [k*hAi (O)]-’ [q + k’jar Ai (2) d2-J = 

0 

34~ r (2i3) h_‘h _ 2-13v,n-1r2 (2/3) k-25 

It is obvious that complex values of k obtain only when o is complex. If 
o is made real, then k is also real. This conclusion remains valid also for con - 

siderable 1 @ I. 
The complete solution of the transcendental equation was numerically obtained 

on a computer. Denoting its left-hand side by @ we have 

CD (w) = K’:, w = olk”S 

We select an arbitrary o = Oj and determine the corresponding k = kj(oj) 
using Newton’s meth,od . Let kji be the i - th approximation of that unknown quantity, 
then wj’ = ojl(kj’)*‘~ and the correction 

Akj’ = [kj’- CD (Wj’)] [G&kt[l + $f$~]]-’ 
(3.10 1 

Owing to the analiticity of function CD (w) its derivative d@ldz is indepen - 
dent of direction in the complex plane, which makes formula (3.10 ) very convenient 
for calculations. Taylor expansion (3.9) for Airy’s function, whose argument variation 
was limited by inequality 1 z 1 < 7 , was used in calculations. The quantity 5-1 
which corresponds to the preceding Wj-1 was specified for the initial approximation kj”. 
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With a step 1 Ao 1 = 0.1 formula (3.10) makes it possible to determine k to within 
six digits after two to three iterations. For considerable values of 1 Z 1 -+ 00 it is net - 
essary to use an asymptotic expansion of Airy’s function instead of Taylor series [ll] . 

Curves calculated for k (0) are shown in Fig. 1 solid lines relate to kl and 

dash lines to k, . The quantity aa = Imo is taken as the independent variable and 
01 = Re o appears as a parameter whose numerical values denote the related curves. 

It will be seen that all curves for or > 0 lie on one side of the curve for w1 = 0. 
Functions k, (02) and k, (02) are, respectively, even and odd and independent 
of the value of or . Both the real and the imaginary parts of k monotonically in - 
crease with increasing or and 0s. 

Curves with or = 0 are limit curves, since then solution (3.1) is purely OS - 
cillatory in time. Oscillations in time are accompanied by oscillations in space but, 

since k, > 0 , the latter are attenuated in conformity with the exponential law when 

1c+--co. We therefore conclude that the supersonic boundary layer on the plate 
surface can be steady up to a certain point beyond which lies a region where gas para - 

meters are subject to periodic variation with constant amplitudes at each place. 

Fig. 1 Fig. 2 

A property of the linear solution is that when 01 > 0 the curves show the in - 

creasing amplitude of oscillations. To avoid an exponential increase of amplitude when 

t -+ 00 (and when x -+ 00 ) it is necessary to integrate the system of Eqs. (2.8) 

without recourse to its linearization. 
In addition to the described program another was established for calculating the 

dependence w (k). The results obtained by that program are shown in Fig. 2, where 
solid and dash lines relate, respectively, to w1 and ws . The quantity k, was taken 
as the independent variable, and values of parameter k, are indicated at their related 

curves. The quantity or drops fairly rapidly to zero with increasing k, and k, = 
const . From this we determine the range of variation of the independent variable in the 

derivation of functions os (k,). Values of o1 < 0 are not considered here, since 

they relate to oscillations which dampen in time. 
We shall discuss in conclusion the link between the solutions considered here 
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and the nonlinear theory of viscous flow stability. So far the investigated phenomena 
were assumed to take place under conditions of free interaction between an unsteady 
boundary layer and an external potential flow. However the introduction of time as one 
of the arguments representing parameters of free interaction in the dependence, makes 
in itself possible to treat these from a different point of view. Thus in a particular case 

it is possible to formulate the problem of boundary layer stability in the same terms as 
the problem of development of perturbations in that layer, which lead to the formation 
of a self-induced pressure gradient. 

In the nonlinear theory of viscous flow stability, which was the subject of recent 
surveys [l:! (13 1, a considerable part is played by the concept of the critical layer. Its 

position, i. e. distance from the wall, is determined by the condition that the phase 
velocity of perturbation propagation is close to the velocity of the main stream speci - 

fied by function U, (yz). A thorough analysis of the boundary layer structure appears in 
[14, 151, where it is based on essentially nonlinear equations, although viscous stresses 
are taken there into account only for clarifying some details of the velocity field. The 

critical layer is originated when the perturbation amplitude reaches the threshold below 
which the linear theory of stability is valid. 

Let us now assume that the velocity of wave propagation is close to zero. The 
critical layer then reaches the bottom of flow and merges with the boundary layer re- 

gion III . 

Since perturbations in it are compar - 
atively large, they must result in aself- 
induced pressure gradient. The latter 
is automatically attuned to the velocity 
field structure with the stream filament 
thickness varying with time. The stab - 

ility problem is, thus, formulated sim- 
ilarly to that of free interaction of an 

unsteady boundary layer. 
Let us consider solution (3.1) with 

4 8 WI 
o2 = k, = 0 using the described ap- 

preach. The behavior of the dash cilr- 
Fit7 0. :!I ves in Fig. 1 immediately shows that in 

spite of the specification of a pair of 

numbers out of four which form the exponents o and k, there exists a complete set 
of values for k, which define the dependence k, (q). When o2 = k, = 0 solution 
(3.1) may be treated as a traveling wave. It is such perturbations that are considered 

in the theory of the critical layer [12 - 151. Formula (3.7 ) by which function f (Y) is 
introduced then contains an integral of real quantities. We assume that the traveling 
wave is generated at instant t = 0 by the divergence of gas parameters that are dis- 
tributed according to the law 

ugl = y - u.~+ , val = akek’“f (y). pal = oeklx (3.11) 

The pattern of perturbed motion at t > 0 depends on number k,. Values of 
exponent co1 are obtained from the curve in Fig. 3. When k,= kl*= [3’1~ r (2/3)/2n]7a, 
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we have or = 0. The initial data (3.11) represent the exact steady solution of the 
linear problem derived in [4]. Such wave remains stationary at all instants of time. 

When k, > k,* , the exponent o1 > 0 , and the wave runs against the basic 
flow in the initial boundary layer. The propagation of perturbations upstream is in com- 
plete accord with the fundamental ideas of the theory of free interaction, but was not, 

so far, considered in problems of motion stability of a viscous fluid. The origin of this 

phenomenon is explained by the selection of a fairly high pressure gradient at the initial 
instant of time. 

Finally, let k, < kr* and consequently 01 < 0. Under these conditions the 
wave travels downstream, as is usually assumed in the nonlinear theory of viscous flow stab- 

ility . Thus the direction of wave propagation is determined by the pressure gradient in 
initial data. The comparatively small increase of excess pressure along the z -axis at 

t = o is incapable of forcing the penetration of perturbations upstream, while the 

basic flow in the initial boundary layer carries these downstream. When k, + 0 , 01 * 0 
too, and formulas (3.1) are transformed into the trivial solution us1 = y, us1 = 0,, and 
p31 = 0 for the Blasius boundary layer. The curve represented in Fig. 3 connects both 

points or = 0, k, = kl* and w1 = 0, k, = 0 which determine the bifurcation of the 
linear solution when the gas flow is steady. At the second of these points the velocity of 
the wave propagating downstream proves to be infinite. 
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